Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Законы движения

В 1687 году Исаак Ньютон (1643–1727) опубликовал свою книгу «Начала» – без сомнения, одну из важнейших работ по физике всех времен. Хотя это было удивительно нечитабельно из-за содержания и формы, ее быстро распродали. В этой книге Ньютон описывает (среди прочего) три закона движения. Эти три закона доказывали – и математически, и физически, – чем в действительности является и не является сила. Для начала, это не энергия. В продолжение Ньютон корректно выводит из своего третьего закона сохранение импульса. В отличие от Гюйгенса, Ньютон доказал, что импульс сохраняется универсально, не только во время столкновения двух твердых сфер. Сегодня мы видим, что импульс сохраняется во всех видах систем от бильярдных шаров до субатомных частиц.

Хотя Ньютон воздержался от участия в полемике вокруг vis viva, он был против vis viva в целом, так как «живая сила», казалось, не сохранялась при неупругих столкновениях; по-видимому, его не убедили аргументы Лейбница, что vis viva передается малым частицам в объекте. В целом Ньютон просто не верил в сохранение энергии. В то время как Декарт был уверен, что Бог играл роль всемирного архитектора, Ньютон – будучи очень религиозным – хотел видеть Бога в более заметной и постоянной роли, чем первоначальный проектировщик.

Для него участие Бога было необходимо, чтобы поддерживать все в рабочем состоянии. Соответственно, энергия не сохранялась, потому что был Бог, который продолжал предоставлять Вселенной энергию по мере необходимости; была рука Бога, которая заводила «всемирные часы», чтобы все работало вечно. То, что Вселенная все еще продолжает работать, было для Ньютона доказательством существования Бога. Таким образом, Вселенная Ньютона работала согласно его законам движения и хранила импульс, но требовала случайного «подталкивания» от Бога, чтобы события шли своим чередом.

Ньютон написал «Начала» главным образом для того, чтобы найти решение проблем, связанных с астрономическими объектами, таких как движение планет вокруг Солнца, и дал только несколько примеров того, как можно было бы применить эти законы к движению здесь, на Земле. И хотя результаты были впечатляющими, небольшое количество примеров и отсутствие их точности оставили многих задаваться вопросом, как применить Ньютоновы законы движения к земным проблемам в целом. В частности, динамика взаимодействия тел, как казалось многим, методам Ньютона не поддавалась.

Понимание вещества

Отсутствие четкого понимания состава вещества и его фундаментальных принципов только усложняло для человечества задачу по постижению движения. В 1724 году Парижская академия провела конкурс, касающийся законов, управляющих столкновением «абсолютно твердых сфер». Иоганн Бернулли (1667–1748) начал с того, что прямо отверг возможность существования таких тел в природе. Само собой разумеется, его позиция не помогла ему расположить к себе академию, и его дисквалифицировали.

Бернулли (который в своей аргументации опирался на «Законы непрерывности» Лейбница) считал, что если бы две абсолютно твердых сферы столкнулись, их направления и скорости должны были бы мгновенно измениться под влиянием импульса. Это вызвано тем, что совершенно твердый объект не будет «мяться» или «деформироваться», а скорее останется после столкновения неизменным. С другой стороны, упругий объект после воздействия сожмется, а впоследствии вернется к своему исходному состоянию, подобно пружине. Конечно, для этого процесса потребуется определенное количество времени. Для Бернулли и Лейбница отсутствие такого механизма для абсолютно твердых сфер – объяснение того, почему столкновение должно было произойти мгновенно и, следовательно, физически неосуществимо.

Бернулли считал, что вещество изначально упругое, а столкновение объектов приводит к сжатию и расширению «крошечных пружин» внутри них. Поскольку одна из этих пружин сжата, vis mortua и ее последующее распространение приводит ее к преобразованию в vis viva. В свою очередь, vis viva передается другому телу, вовлеченному в столкновение, таким образом изменяя его движение. Используя эту оригинальную модель вещества, Бернулли смог показать, как и Гюйгенс, что и vis viva, и импульс при столкновении сохраняются. Таким образом, Бернулли обеспечил оригинальную парадигму Лейбница математической и физической основой, расширив ее.

Когда XVIII век подошел к концу, область физики, которую сегодня мы называем классической механикой, действительно вступила в свои права. Галилео показал, что можно было понять Вселенную через осторожное наблюдение и математику. Многие продолжали строить на прочном научном фундаменте, который он заложил. Со времен Галилео математика стала еще более влиятельной, а ее приложение к физическим проблемам – более распространенным. Работа Галилео дала базу для сохранения «чего-то», в чем в конечном счете распознали сохранение механической энергии, или, другими словами, преобразование потенциальной энергии в кинетическую энергию – и наоборот.

Это понимание выросло из попытки лучше понять импульс, силу, вещество, а также энергию. Хотя Ньютон опровергал сохранение энергии, он действительно доказал универсальное сохранение импульса, дав математическое и физическое описание силы, и представил законы движения земных и небесных тел.

Работы других исследователей уточнили и дополнили его исследования. Даже рабочее определение вещества как действия «крошечных пружин», далекое от полного, оказалось успешным с точки зрения решения проблем физики. Действительно, казалось, что проблемные вопросы в значительной степени находились «под контролем». Тем не менее нерешенных вопросов было все еще много. Среди них, возможно, одним из самых непростых было тепло.

Показать оглавление

Комментариев: 0

Оставить комментарий