Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Современная атомная теория: начало

Джон Дальтон, сын ткача, родился в семье квакера в Иглесфилде, Камберленд, в Англии. Когда ему было двенадцать, школу, в которой он учился, передали его старшему брату, который позвал Джона помогать в обучении; два года спустя братья купили свою школу.

В 1793 году Дальтон переехал в Манчестер, чтобы преподавать математику в Нью Колледже. Сначала Дальтона заинтересовала метеорология, и в том же году он издал «Метеорологические наблюдения и эссе». Однако у него было много научных интересов, и скоро он обратился к исследованию газов, заинтриговавших его во время исследования атмосферы Земли, являющейся смесью газов, которые мы называем воздухом.

Дальтон задался вопросом: почему экспериментальные данные его времени указывали, что атмосфера Земли была однородной? Другими словами, почему состав атмосферы мало изменялся по мере увеличения высоты? Он знал, что атмосфера Земли является смесью газов с разными плотностями. (Сегодня мы знаем, что атмосфера Земли состоит из азота на 78,09 %, кислорода на 20,95 %, аргона на 0,93 %, углекислого газа на 0,039 % и небольшого количества других газов. Воздух также содержит переменную объемную долю водяного пара в зависимости от температуры, составляющую в среднем приблизительно 1 %.) Таким образом, Дальтон ожидал, что более плотные газы будут находится ниже, в то время как менее плотные будут преобладать на больших высотах. Это и правда имело некоторый смысл.

В конце концов, нефть, смешиваясь с водой, за счет меньшей плотности поднимается вверх. Воздушный шар, заполненный гелием, летит вверх в направлении высоких слоев земной атмосферы, потому что гелий менее плотный, чем воздух. Так почему менее плотные газы не должны быть выше более плотных в атмосфере Земли? Во времена Дальтона не было известно, что это действительно так. Тем не менее это не слишком заметно на уровне нескольких миль выше Земли (на эти высоты распространялись экспериментальные данные во времена Дальтона), но становится хорошо заметно на больших высотах. Любой, кто бывал на большой высоте (возможно, вы занимались сноубордингом или пешим туризмом в горах), может засвидетельствовать, что дышать ощутимо тяжелее – из-за меньшего количества кислорода.

Так случилось, что кислород – один из наиболее плотных газов, составляющих воздух, и поэтому его содержание при удалении от поверхности Земли становится все меньше. Тем не менее такая смесь газов, как атмосфера, несколько отличается от смеси жидкостей, например нефти и воды. В то время как жидкости с разной плотностью при взаимодействии полностью расслаиваются, газообразные смеси ведут себя слегка иначе. Частицы (атомы, молекулы) газа движутся дальше и быстрее (за данный отрезок времени), чем частицы жидкости. За счет этого каждая частица подвергается приблизительно миллиарду столкновений с другими частицами каждую секунду. Как следствие, смеси газа имеют тенденцию… смешиваться. А именно, смешиваться таким образом, что частицы (более или менее) равномерно распределяются повсюду (или однородно, как мы говорили раньше), не формируя четко определенные слои, как это делают жидкие смеси.

Поэтому атмосфера Земли – однородная смесь газов, плотность которых меняется в зависимости от высоты, снижаясь на больших высотах. Вспомните, что мы говорили об идее движущихся частиц как об основе кинетической теории. Однако Дальтон просто не верил в кинетическую теорию. Он полагал, что атомы объекта остаются на месте (статическая модель вещества). Он также считал, что атомы объекта всегда находятся в прямом контакте друг с другом. Это согласовывалось с отказом Дальтона принять понятие «действия на расстоянии». Дальтон полагал, что объекты могут воздействовать друг на друга, только если они вступают в контакт.

Дальтон был не единственным, кто не признавал действия на расстоянии. В самом деле, это был важный момент в формировании атомной теории Дальтона. Так как же Дальтон объяснял смешивание газов в атмосфере? На самом деле, очень просто – он пришел к выводу, что сила взаимного отталкивания между частицами газа должна отвечать за их смешивание, пока они не придут в некоторое состояние равновесия, оставаясь на одном месте в тесном контакте.

Интерес Дальтона к газам, возможно, начался с его исследований атмосферы Земли, но скоро его привлекло поведение самих газов. Дальтон был убежден, что растворимость газа в воде связана с весом атомов газа. В результате Дальтон сконцентрировал свое внимание на определении массы атомов.

Как вы можете представить, определить массу атома не так-то просто. В конце концов, вы не видите атом, и поэтому не представляется возможным просто положить его на весы и измерить массу. Закон постоянства состава, каким его знал бы Дальтон, гласил, что когда вещи, из которых состоят вещества, объединяются, чтобы сформировать сложное вещество, они делают это в определенном соотношении.

Безусловно, закон постоянства состава не подтверждает существование атомов, но для Дальтона закон был сильным аргументом в пользу этого. Дальтон, должно быть, задавался вопросом, почему соединение может быть сформировано только таким способом, в определенных пропорциях. Он, должно быть, спрашивал себя: в чем же дело, почему эти соотношения строго зафиксированы?

В конце концов Дальтон сделал большой шаг вперед и пришел к заключению, что причиной были атомы (элементов), которые формируют вещество. Не было никаких сомнений – Дальтон полагал, что атомы являются физической основой вещества, а элемент (как мы и говорили прежде) придает атому его индивидуальность и соответствующие физические свойства. Это было смелым предположением в начале XIX века, когда большинство ученых не знали, что делать с атомами. Начав с этого, Дальтон намеревался определить атомные массы элементов.

Создание системы масс атомов было суровым испытанием в 1800 году. Дальтону нужно было сделать несколько разумных предположений, или гипотез. Во-первых, Дальтон не только решил, что закон постоянства состава подразумевает, что атомы объединяются в определенных соотношениях, но и что они делают так только в отношениях целых чисел, а не дробей. Таким образом, пропорции были бы, например, два к одному (2: 1); три к четырем (3: 4) и т. д. – не один к одной четверти (1: 1/4); половина к одной пятой (1/2: 1/5) и так далее. Причина была проста: Дальтон полагал, что атомы были неделимы:

«Вещество, пусть и может делиться множество раз, но не бесконечно. Таким образом, должна быть некоторая величина, по достижению которой дальнейшее деление вещества становится невозможным. Существование таких мельчайших частиц вещества едва ли может быть подвергнуто сомнению, хотя они, вероятно, слишком маленькие, чтобы их можно было показать, совершенствуя микроскоп».

Поэтому теория, что атомы неделимы, означает, что вы не сможете разделить их пополам на трети или четверти и т. д., следовательно, они должны объединяться в простых отношениях целых чисел. Все очень просто.

Вспомните, Лавуазье говорил, что в ходе химической реакции масса (вещество) сохраняется. Кроме того, интерпретация Дальтоном закона постоянства состава была такова: во время химической реакции атомы объединяются так, что их количества относятся как целые (не дробные) числа, чтобы сформировать сложное вещество. Определившись с этими двумя понятиями, мы можем прийти к выводу, что во время химической реакции сохраняются именно отдельные атомы; атом – дискретная единица сохранения массы в химической реакции. Другие главные заключения Дальтона о природе атомов следующие.



– Все атомы определенного химического элемента одинаковы. Понятие химических элементов, выдвинутое Бойлем и Лавуазье и получившее развитие в атомной теории Дальтона, было главным, отличавшим ее от древнегреческих атомных теорий, которые мы обсуждали ранее. Атомы формируют вещество, но не все атомы одинаковы. Скорее атомы отличаются друг от друга только тем, какой элемент они формируют – элемент «определяет» свои атомы, так сказать. Дальтон писал: «Мельчайшие частицы всех однородных тел абсолютно одинаковы по массе, форме и т. д.».

Некоторые элементы уже знакомы вам (наряду с их химическими символами), например кислород (O), водород (H), медь (Cu), свинец (Pb), золото (Au), серебро (Ag) и алюминий (Al).



– Атомы неизменны. Века неудавшихся попыток алхимиков превратить свинец в золото, несомненно, убедили Дальтона, что невозможно превратить атом одного элемента в атом другого элемента. В самом деле, вы не можете преобразовать кислород в водород. Однако сегодня мы знаем, что атомы не так уж неизменны (или вечны) – на самом деле они «разваливаются», переживая радиоактивный распад, который мы обсудим позже. Во времена Дальтона об этой особенности определенных атомов не знали, что было, вероятно, хорошо, поскольку это, скорее всего, просто запутало бы вопрос природы атомов.



– Атомы объединяются, чтобы сформировать более крупные объекты, известные как молекулы. Атомы – основополагающие частицы, из которых состоит вещество. Однако группа атомов может объединиться, чтобы сформировать нечто немного большее – не достаточно большое, чтобы быть замеченным невооруженным глазом, но большее, чем отдельный атом. Эти комбинации атомов формируют молекулы или соединения.



– В химических реакциях только перестраивается порядок атомов. Теперь мы знаем, что это связано с сохранением атомов в ходе химических реакций. Так как атомы не создаются и не разрушаются, они должны просто перестроиться («перемешаться»), чтобы сформировать молекулы. Кроме того (как только что было отмечено), они не изменяют свою природу, чтобы стать другим элементом в химической реакции.

Эти идеи сформировали систему взглядов Дальтона на атомы и позволили ему разработать собственную очень впечатляющую атомную теорию, которая выводит ряд атомных масс для различных элементов. Давайте посмотрим, как же он смог совершить этот подвиг.

Показать оглавление

Комментариев: 0

Оставить комментарий