Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Сохранение всей энергии

Физик по образованию, Герман фон Гельмгольц (1821–1894) начал изучение сохранения энергии с попытки доказать, что тепло тела и мышечное движение, производимое животными, непосредственно связаны с энергией, сохраненной в еде. Гельмгольц твердо полагал, что энергия преобразуется из одной формы в другую, никогда не будучи создана или разрушена. Действительно, Гельмгольц придумал фразу «принцип сохранения энергии» и продолжил строить полную математическую формулировку, исходя из сохранения энергии в приложении к механике, теплу, электричеству, магнетизму, химии и астрономии, чего Майер так и не смог постичь, а Джоуль никогда и не пробовал.

Слепой приверженец формул, он применял их ко множеству физических явлений. В частности, он утверждал, что потеря части кинетической энергии в неупругих столкновениях происходит из-за теплообразования, а оставшаяся часть – из-за деформации сталкивающихся объектов. Для Гельмгольца деформация была результатом увеличения «силы натяжения». Этот формализм очень похож на утверждение Иоганна Бернулли о том, что кинетическая энергия, или vis viva, потерянная в неупругих столкновениях, сохранилась, сжав «крошечные пружины», из которых, как он предполагал, состоял объект.

Фундаментально и Гельмгольц, и Бернулли были правы, и сегодня мы понимаем деформацию как изменение потенциальной энергии, сохраненной в объекте. Однако Гельмгольц (правильно) понимал теплообразование во время неупругого столкновения, и это отличало его работы от работ Бернулли и пролило свет на природу тепла вне его механического эквивалента работы.

Черпая идеи из ранних работ Джоуля, Гельмгольц продолжал применять принцип сохранения к тепловым и электрическим явлениям. Он отвергал теплородную теорию и считал, что тепло – результат движения частиц материи. Для Гельмгольца тепло и механические явления были явно связаны, как и все другие формы энергии, его математической парадигмой – первым началом, которое он твердо вывел приблизительно в 1850 году, обеспечив физическую теорию новой объединяющей основой.

Энергия-хамелеон

Наше начальное понимание энергии пришло из экспериментальных наблюдений, проводимых Галилео в XVI и XVII веках. Однако к концу XVII века математика была мощным научным инструментом, что доказывают «Начала» Ньютона, изданные в 1687 году. Тем не менее понимание энергии в целом пришло только в XIX веке.

Тепло было, возможно, самым большим препятствием на пути понимания энергии, оставаясь не связанным с ней приблизительно до 1850 года, когда было сформулировано первое начало (закон сохранения энергии, или первый закон термодинамики). До тех пор тепло считали своего рода жидкостью, которая могла проходить внутрь и наружу по крошечным пространствам, которые предположительно существовали в веществе. Это вещество называли теплородом и в течение долгого времени тепло воспринимали отдельно от остальных форм энергии. Однако, в то время как развивалось наше понимание вещества, также развивалось и наше понимание тепла, и наконец стало понятно, что тепло – не что иное, как другая форма энергии. Действительно, мы были вынуждены пересмотреть нашу точку зрения о самой природе вещества, осознав, что тепло было не чем иным, как движением ее малых частиц.

Сегодня мы разделяем много форм энергии: кинетическая, потенциальная, химическая, электрическая, энергия света, ядерная и тепловая. Энергия действительно своего рода хамелеон, способный переходить из одной формы в другую, но при этом никогда не исчезая; всегда сохраняясь. Есть определенный парадокс в том, что мы часто говорим об «энергосбережении», когда по факту природа всегда сохраняет энергию. Конечно, мы имеем ввиду «не трать энергию». Мы признаем, что энергия в наших руках весьма ограничена и ее можно израсходовать. Кроме того, это означает, что мы признаем: не все источники энергии жизнеспособны или «полезны». Таким образом, не вся энергия может служить для нас источником работы.

Это очевидное неравенство иллюстрирует нечто фундаментальное в вопросе энергии: в то время как вся энергия сохраняется, не все формы энергии мы можем применять. Кроме того, когда мы действительно используем энергию для чего-то полезного, природа требует, чтобы определенное ее количество было потрачено впустую. То есть энергия, затрачиваемая для нашей желаемой задачи, никогда не будет использована целиком. Природа ожидает определенную «компенсацию». В действительности эти основополагающие принципы энергии связывают ее с другим очень важным фактором – энтропией.

Часть 2

Естественная компенсация: энтропия

Глава 5

Размышления о тепловых двигателях

Термодинамическое происхождение энтропии

(Второй) закон, гласящий, что энтропия всегда увеличивается, я полагаю, занимает главное место среди законов Природы. …Если ваша теория противоречит второму закону термодинамики, мне нечем вас утешить; ничто не удержит вашу теорию от того, чтобы провалиться с глубоким унижением.

Сэр Артур Стэнли Эддингтон, британский астрофизик (1882–1944)


К 1820 году промышленная революция вошла в полную силу, движимая буквально и фигурально паровым двигателем. Паровой двигатель является типом теплового двигателя, который использует пар в качестве рабочего тела; пар является источником тепла, обеспечивающего производство полезной работы. Другая версия теплового двигателя – двигатель в вашей машине. Здесь рабочее тело – смесь газа и воздуха; сгорание этой смеси приводит к выделению тепла и увеличению давления, двигающему поршни в цилиндрах двигателя, за счет чего движется и ваш автомобиль.

Тепловой двигатель требует по крайней мере двух различных температур, чтобы преобразовывать тепло в работу. В самом простом варианте тепловой двигатель (см. рис. 5.1) берет некоторое количество тепла (qН) из горячего резервуара (нагревателя с высокой температурой TН), использует часть, чтобы выполнить работу (W), и сбрасывает другую часть (qХ) в холодный резервуар (холодильник с более низкой температурой TХ), который обычно располагается снаружи.



Рис. 5.1. Тепло (qН) выходит из горячего резервуара (нагреватель с высокой температурой TН). Часть этого тепла преобразуется в работу (W) рабочим телом двигателя, в то время как другая часть тепла (qХ) поступает в холодный резервуар (холодильник с низкой температурой TХ).





Рассмотрим очень простой тепловой двигатель из воздушного шара и фена. Разместим маленький вес сверху на воздушном шаре и нагреем их при помощи фена (нагреватель), благодаря чему воздух в воздушном шаре (рабочая жидкость) расширится и начнет поднимать шар вверх за счет поглощения части тепла, в то время как остальная его часть рассеется в окружающей среде (холодильник). Таким образом, наш простой тепловой двигатель выполнил определенную работу при помощи части тепла от фена, а другая часть ушла в окружающую среду. Более того, если мы уберем вес и проведем тот же эксперимент, воздушный шар все еще будет работать, расширяясь вопреки внешнему давлению. Таким образом, на этот раз система работает, «поднимая» воздух за пределами воздушного шара, тогда как прежде поднимался вес, который был на верхушке шара.

При этом процессе теряется существенное количество тепла – тратится впустую при переходе тепла от источника к приемнику. К 1820-м годам, после десятилетних попыток сократить эти потери, удалось добиться эффективности, при которой 6 % тепла от нагревателя действительно использовались для работы, тогда как оставшиеся 94 % терялись в окружающей среде – не самые утешительные показатели.

С экономической точки зрения рос интерес к повышению эффективности парового двигателя, или, другими словами, максимизации количества работы, производимой с помощью тепла из нагревателя, и минимизации (или исключению) потери тепла в окружающей среде. Именно этого намеревался достичь Сади Карно, и, добившись, он стал основателем теории термодинамики.

Показать оглавление

Комментариев: 0

Оставить комментарий