Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Проблема излучения абсолютно черного тела

Макс Планк (1858–1947) родился в Киле (в современной Германии), он был шестым ребенком выдающегося юриста и профессора права Кильского университета, Иоганна Юлиуса Вильгельма Планка, и его второй жены, Эммы Патциг. Культура семьи Планка сказалась на его жизни и работе, наградив стремлением к совершенству в научной деятельности, неподкупностью, преданностью идеалам, надежностью и щедростью.

В 1867 году, когда Планку было 9 лет, его отец получил приглашение в Мюнхенский университет. Семья переехала, и Планк поступил в гимназию имени Максимилиана, где заинтересовался математикой и физикой. Впрочем, Планк преуспевал и в других дисциплинах, особенно в музыке. Таким образом, к выпуску, когда Планку было шестнадцать лет, ему предстояло принять непростое решение в выборе будущего между музыкой и физикой. Он сделал выбор в пользу физики, но музыка продолжила играть важную роль в его жизни. Действительно, Планк был замечательным пианистом (с даром абсолютного слуха), каждый день наслаждающимся исполнением произведений Шуберта и Брамса.

В 1874 году Планк поступил в Мюнхенский университет, собираясь изучать физику. Профессор физики Филипп фон Жолли (1809–1884) отговаривал Планка от такого занятия: «В этой области почти все уже открыто, и остается лишь заполнить несколько пробелов».

Планк мудро оставил этот совет без внимания. Под руководством Жолли Планк проводил эксперименты, единственные в его карьере, в конечном итоге перейдя в теоретическую физику. В 1877 году Планк в течение года учился в Берлинском университете у наиболее выдающихся немецких физиков – Германа Гельмгольца (вспомним часть 1) и Густава Кирхгофа. К сожалению, ни один, ни другой не вызвали сильного вдохновения. Планк вспоминал Гельмгольца плохо подготовленным к лекциям, а Кирхгофа «сухим и монотонным». Между тем, самостоятельно изучая работы вышеупомянутых ученых и Клаузиуса (см. часть 2) по термодинамике, Планк наконец нашел, что искал.

Планк подходил к физике со страстью – с «духовной жаждой», как это описывал Эйнштейн – в поисках вещей, абсолютных и фундаментальных. Он говорил:

«…чрезвычайно важно, что внешний мир – нечто не зависящее от человека, что-то абсолютное, и поиск законов, применяемых к этому единственному, представляется мне самым грандиозным научным стремлением в жизни».

В самом деле, Планк рассматривал поиск абсолютного как «самую благородную и самую стоящую задачу науки».

В 1879 году, когда ему был уже двадцать один год, Планк защитил докторскую диссертацию, посвященную второму началу термодинамики и понятию энтропии. Вообще термодинамика, особенно понятие энтропии, останется центральной темой в ходе почти всех работ Планка. К сожалению, карьера Планка поначалу развивалась медленно, поскольку он был не в состоянии произвести большое впечатление своей работой о понятии энтропии.

Одна из возможных причин – тот факт, что эта область исследования была относительно новой. Когда Планк обнаружил, что бо2льшую часть его работы по энтропии уже проделал Джозайя Уиллард Гиббс (1839–1903), он еще больше разочаровался. Более того, его труду по термодинамике разбавленных растворов не хватало химического описания, так успешно примененного другими учеными, например Якобом Хендриком Вант-Гоффом (1852–1911). Однако его усилия не стали напрасными, и навыки, которые он улучшал, в итоге ему помогли.

Хотя варианты формы спектра абсолютно черного тела начали появляться в 60-е годы XIX века, реальный прогресс с экспериментальными успехами пришел только в 90-е годы. В 1893 году Вильгельм Вин (1864–1928) представил обобщенное математическое выражение для спектра абсолютно черного тела, известное как закон смещения Вина. В 1896 году он пошел дальше, дав более конкретное математическое выражение, чем предыдущее. Этот вариант, закон излучения Вина, отлично согласовывался с доступными экспериментальными данными, тем самым оказавшись решением, которое давно искали после постановки задачи Кирхгофом, – или так, во всяком случае, казалось.

Между 1887 и 1894 годами Планк потратил бо2льшую часть своего времени на увлекательную новую область физической химии, пионерами в которой были Сванте Август Аррениус (1859–1927) и Вант-Гофф. Как уже говорили, эту работу в основном не заметили, на что Планк позже обратил внимание. Тем не менее она несомненно помогла ему получить место экстраординарного профессора в Кильском университете в 1885 году и впоследствии, в 1889 году, стать преемником Кирхгофа в Берлинском университете, а в 1892 году – ординарным профессором.

Переезд Планка в Берлин приблизил его к тому, что позже стало эпицентром теоретических и экспериментальных исследований излучения абсолютно черного тела. К 1890-м годам вряд ли кто-то из физиков не знал, что Кирхгоф, Больцман и Вин утвердили свой вклад в термодинамику в решении проблемы абсолютно черного тела. Таким образом, в 1894 году, когда Планк приступил к проблеме абсолютно черного тела, он ожидал, что его любимые средства термодинамики – особенно концепция энтропии, которую он некоторое время оттачивал на проблемах физической химии, – сослужат ему хорошую службу.

Планка соблазнили несколько вещей, связанных с этой проблемой. Во-первых, Планк был заинтересован в сохранении роли термодинамики и концепции энтропии в области электродинамики (учении об электричестве, магнетизме и свете, например тепловом излучении). Также это была важная для физического сообщества проблема, и ясно, что Планк часто обсуждал проблему абсолютно черного тела с коллегами из Берлина, в частности с Вином и Генрихом Рубенсом (1865–1922), каждый из которых принимал активное участие в исследовании АЧТ. Но, что самое важное, Планку эта проблема дала возможность искать нечто абсолютное:

«Измерения Отто [Люммера] и Эрнста [Прингсгейма] из физико-технического института, проведенные для исследования спектра теплового излучения, обратили мое внимание на теорему Кирхгофа, утверждающую, что в полости с идеально отражающими стенками, из которой выкачан воздух и которая содержит совершенно произвольные излучающие и поглощающие тела, со временем установится состояние, в котором тела примут одинаковую температуру, а все свойства излучения – даже его [спектр] – не зависят от структуры и состава тел, а только от температуры. Поэтому этот [спектр теплового излучения] представляет собой абсолютную величину; и, поскольку поиск абсолютного всегда мне представлялся прекраснейшей (schönste) задачей исследования, я охотно принялся за нее».

У Планка был еще один повод работать над проблемой излучения абсолютно черного тела. Несколько электрических компаний поручили ему разработать лампочки накаливания, которые дали бы больше всего света при наименьших затратах энергии.

Планк вообразил ящик с идеально отражающими стенками, содержащий объекты, которые он назвал резонаторами. Резонаторов много, каждый излучает и поглощает тепловое излучение на различных частотах. Сегодня мы бы уподобили резонаторы Планка атомам или молекулам. Однако Планку не нужно было давать никакой информации о составе резонатора, поскольку, как мы знаем, закон Кирхгофа выполняется независимо от конкретных особенностей объектов в системе.

В самом деле, Планк придерживался этого обобщенного описания во всех своих теориях и использовал его в своих целях на каждом шагу. Получается, что подход Планка имел много общего с методом, используемым Фурье для формулировки своего закона (см. часть 2): они оба концентрировали внимание на общих свойствах системы, имеющейся под рукой, вместо того чтобы увязать в микроскопических подробностях.

В то время Планк не верил в существование атомов и молекул. В самом деле, он был одним из главных оппонентов Больцмана и в 1881 году прямо отвергал атомы:

«При правильном использовании [второе начало термодинамики] несовместимо с гипотезой об имеющих предел атомах. Вследствие этого стоит ожидать, что в ходе дальнейшего развития теории будет борьба между двумя теориями, которая будет стоить жизни одной из них. Было бы преждевременным сейчас предсказывать исход этой битвы; но в данный момент мне кажется, что, несмотря на крупный успех атомной теории в прошлом, нам в конце концов придется от нее отказаться…»

Главной проблемой для Планка было то, что концепция атомов и молекул, и то, как теоретики ее использовали, например, в кинетической теории и статистической механике, подрывало его интерпретацию энтропии. Видение Планка этой физической величины прямо противоречило микроскопическому варианту Больцмана с его атомами, микросостояниями, и – больше всего – с его вероятностями.

Для Планка энтропия была «абсолютным» законом, не связанным с вероятностным или статистическим поведением, как его описал Больцман. В частности, для Планка стремление системы к равновесию из неравновесного состояния (а конкретней, макросостояния, как отмечалось в части 2) должно не только приводить к росту энтропии – как требовало второе начало, – но и сама энтропия должна возрастать на каждом шагу того пути к равновесному состоянию.

В 1876 году Больцман уже усвоил урок: критика со стороны Лошмидта заставила его пересмотреть природу второго начала термодинамики. К 1877 году Больцман пришел к заключению, что второе начало по своей природе носит вероятностный характер. В результате Больцман рассматривал возрастание энтропии (требуемое вторым началом), которому подвергается система при стремлении к равновесию из неравновесного состояния, как возрастание в целом, происходящее не на каждом отдельном шагу.

Получается, что система может, образно говоря, «сделать два шага вперед и один шаг назад», в том смысле, что для нее возможно перейти из состояния с большей энтропией в состояние с меньшей энтропией, пока энтропия возрастает в целом до того, как система достигнет равновесия. И все же с этой ошибкой Планк оказался в хорошей компании.

В 1872 году, когда Больцман написал «Дальнейшее изучение теплового равновесия молекул газа», он не только придерживался той же точки зрения, что и Планк, но и был убежден, что реально ее обосновал:

«…наш результат эквивалентен доказательству того, что энтропия должна всегда возрастать или оставаться постоянной [в состоянии равновесия], и поэтому дает микроскопическую интерпретацию второго начала термодинамики».

А в 1903 году молодой Эйнштейн (ему тогда было двадцать три года) также допустил ту же самую ошибку, написав свою единственную на тот год публикацию «Теорию оснований термодинамики»:

«Мы вынуждены предположить, что более вероятные распределения будут следовать за менее вероятными, то есть W [или энтропия] всегда возрастает до того момента, когда распределение становится постоянным, а W [или энтропия] достигла максимума [Курсив мой. – С. Б.]».

Он снова допустил эту ошибку в 1904 году в своей публикации «Об общей молекулярной теории теплоты». Эйнштейн изучал книгу Больцмана с 1901 года, но, по всей видимости, пропустил слегка спрятанное обсуждение замечания Лошмидта, которое сподвигло Больцмана на собственные размышления по данной теме. Наконец, в публикации 1910 года Эйнштейн правильно сформулировал второе начало. Короче говоря, все – и Больцман, и Эйнштейн, и Планк – ошибочно считали, что энтропия системы, переходящей из неравновесного состояния в равновесное, всегда возрастает, на каждом этапе перехода. Верно (в терминах теории вероятности), что для системы наиболее вероятно увеличивать энтропию на каждом этапе перехода, но не всегда. На самом деле основной мотивацией решения проблемы абсолютно черного тела было желание доказать, что энтропия всегда возрастает, и это сильно повлияло на способ решения вопроса.

С моделью резонаторов на руках Планк был подготовлен. Представим систему Планка в неравновесном состоянии при некоторой начальной температуре с резонаторами, поглощающими и испускающими тепловое излучение на их различных частотах. Через некоторое время температура изменится, а энтропия необратимо возрастет (см. часть 2). В конце концов система резонаторов придет в равновесие: температура станет постоянной, а энтропия достигнет своего максимального значения.

Планк хотел разработать теорию, описывающую изменяющееся состояние системы при ее эволюции от какого-то исходного неравновесного состояния к равновесному, и в процессе показать, что окончательный спектр теплового излучения резонаторов является не чем иным, как спектром излучения абсолютно черного тела. Более того, Планк хотел создать теорию без использования вероятностей и статистики, иначе она бы запятнала абсолютный характер его видения энтропии.

Планк начал свое исследование в 1894 году, совершив значительный прогресс, убедивший его в том, что можно достичь успеха с подходом, лишенным вероятностной, или статистической, интерпретации энтропии. Однако к 1898 году, после нескольких уступок критике со стороны Больцмана, Планк понял, что нужен новый подход.

Система резонаторов Планка, взаимодействующих с тепловым излучением внутри идеально отражающих стенок ящика, не была единственной системой, которая необратимо эволюционировала к равновесию из изначального неравновесного состояния. Рассмотрим неравновесную систему атомов газа. Такую систему будут приводить к состоянию равновесия столкновения между ними. Эволюция будет необратимой, сопровождающейся ростом энтропии. Как только система придет в состояние равновесия, ее энтропия станет максимальной, а сама она достигнет (в случае идеального газа) распределения Максвелла по скоростям, которое будет впоследствии поддерживаться. Все это в 1872 году доказал Больцман в «Дальнейшем изучении теплового равновесия молекул газа». Он посоветовал Планку использовать подобный подход при решении его проблемы. После сильного сопротивления совету Больцмана к весне 1898 года Планк был готов согласиться.

Не то чтобы до этого у Планка не было прогресса. Наоборот, к тому времени его почти четырехлетняя работа дала уравнение, описывающее динамику одиночного излучателя, взаимодействующего с тепловым излучением. Следуя схеме, подобной той, которой придерживался Больцман в 1872 году, Планк смог расширить свое уравнение до «более фундаментального», связывающего среднюю энергию резонатора с общим выражением для спектра излучения абсолютно черного тела, соответствующего системе в равновесном состоянии; фактически у него было уравнение для вещества, находящегося в равновесии с излучением.

Однако если Больцман смог прийти к уравнению, управляющему динамикой системы атомов газа, эволюционирующей от неравновесного состояния к равновесному, Планку, несмотря на использование подхода, подобного примененному Больцманом, не удалось получить такое соотношение для эволюции теплового излучения резонаторов. Таким образом, Планку пришлось оставить надежду доказать абсолютный характер роста энтропии, хотя он сохранял веру в это в течение последующих пятнадцати лет. Однако самым большим разочарованием стало то, что никакие его усилия не привели к точной модели равновесного спектра абсолютно черного тела. В этой связи Планк снова обратился к своей старой знакомой – энтропии.

Используя свое фундаментальное уравнение и закон смещения Вина, Планк был способен подойти к выражению для энтропии резонатора. Из него он легко получил закон излучения Вина. Вин предложил свой закон излучения, основываясь на очень шатких доводах, вообще не делая строгих выводов. Получается, что Планк первым предоставил реальный вывод этого закона, ставшего известным как закон Вина – Планка.

В начале 1899 года, к моменту пятой публикации Планка, описывающей его усилия, закон Вина – Планка отлично соответствовал экспериментальным измерениям. Хотя он и не достиг своей конечной цели, Планк был убежден, что успешно вывел выражение универсальной функции для спектра абсолютно черного тела, которое Кирхгоф призвал найти около сорока лет назад. Однако его победа была недолгой.

Показать оглавление

Комментариев: 0

Оставить комментарий