Приручение. 10 биологических видов, изменивших мир

Исследователи из Рослина

Рослинский институт представляет собой череду очень современных зданий, некоторые из них сконструированы для содержания цыплят, чтобы добиться максимального результата, а другие – для размещения ученых, чтобы получить от них наибольшую отдачу. Все исследования здесь направлены на улучшение качеств кур, и для этого используется не только метод селективного разведения. В течение последнего тысячелетия селекция уже помогла чудесным образом преобразить кур, особенно удивительны ее достижения последних примерно шестидесяти лет. Но теперь у человека есть возможность работать непосредственно с генетическим кодом организма, по сравнению с этим новым подходом селекция выглядит безнадежно устаревшей. Процесс одомашнивания идет до сих пор, и сейчас он движется именно в этом новом направлении.
Новые методы генной модификации сулят человечеству золотые горы. С их помощью сельское хозяйство будущего могло бы стать значительно более эффективным, устойчивым и равноправным. Но нас все еще сдерживает страх. Одно дело селекция, но прямое вмешательство в геном – использование ферментов для модификации ДНК – кажется слишком большим шагом вперед, все равно что перейти Рубикон – назад не вернешься.
Я сама инстинктивно чувствую в этом что-то неправильное. Научная фантастика научила меня – даже меня! – опасаться генетически измененных организмов. Писатель и журналист Уилл Селф мастерски описывал их неприятную, тревожащую непохожесть на обычных существ. В романе «Книга Дэйва» (Book of Dave) у него появляются генно-модифицированные свиноподобные существа «мото», которые представляют собой одновременно питомцев и домашний скот. Они разумны и умеют говорить, хоть и на ломаном языке, и тем не менее их забивают и едят. Эти мото ставят под вопрос наше с вами представление о животных, разводимых для употребления в пищу. Получается, наше вкусовое наслаждение гораздо важнее их жизни. У меня эта идея вызвала слишком сильное неприятие – в течение восемнадцати лет я была полной вегетарианкой. Сейчас я понемногу ем рыбу, подавляя чувство вины, но остальные виды животной плоти для меня все еще неприемлемы.
Мысленно мы проводим границу между собой и другими животными – как же иначе их есть? Вам ведь никогда не приходила в голову идея съесть другого человека (я надеюсь). При этом большинство людей не имеют ничего против разведения домашнего скота, который забивают и мясо употребляют в пищу. А что насчет изменения этих существ? Кажется, этот аспект также не вызывает возражений, если используется метод селекции. Если говорить о растениях, то нас даже не смущает применение радиации или мутагенных химических веществ для искусственного получения мутаций, которые потом используются в селекции для выведения новых сортов сельскохозяйственных культур. И если описанные манипуляции кажутся вам необычными или опасными, то знайте, что они практикуются с 1930-х годов. С тех пор получено и введено в культуру более 3200 типов растений, созданных с помощью индуцированного мутагенеза. Более того, некоторые из них сегодня культивируются и продаются под знаком органической продукции. Так, большая часть арахиса в Аргентине была выведена на основе растений, мутировавших под воздействием радиации. То же самое верно по отношению к большей части риса, выращиваемого в Австралии. Рис-мутант культивируют и в Китае, Индии и Пакистане. Мутантные ячмень и овес широко распространены в Европе. В Великобритании в производстве пива и виски используется ячмень сорта Golden Promise, мутант, созданный в результате воздействия гамма-лучей. Для человека радиация, сформировавшая особенности этих разновидностей растений, не несет никакой опасности: она уже выполнила свою функцию, изменив ДНК их предков и придав им новые полезные признаки.
Такие растения, несомненно, являются генно-модифицированными. Так почему же изменение генов с помощью такого незатейливого инструмента, как гамма-излучение, считается приемлемым, в то время как применение ферментов (значительно более точное и контролируемое) с той же целью предстает как опасная процедура? Международное агентство по атомной энергии настаивает на том, чтобы разделить понятия «радиационной селекции» и биологической, генетической модификации. Первый метод представлен как ускоренный вариант спонтанной мутации, которая происходит в организме и является основой изменчивости, жизненной силой самой эволюции. Но, раз уж мы используем радиацию для модификации ДНК растений и называем это «радиационной селекцией», тем более логичным мне кажется называть биологический вариант этого процесса – более точное и направленное воздействие на организм – «ферментативной селекцией».
Именно поэтому мне так хотелось попасть в Рослинский институт и побеседовать с исследователями, узнав их мнение относительно генной инженерии, а также поговорить о новейших методах, применяемых в данной области. Ведь они пионеры, они работают на научном фронте. Они лучше, чем кто бы то ни было, разбираются в науке, равно как и в путанице, возникающей из-за особенностей человеческого восприятия, предубеждений и здравых опасений. Кроме того, эти ученые знают все о генах курицы – первого домашнего животного, геном которого был полностью расшифрован, произошло это в 2004 году. Адам Балик рассказал мне о генетических технологиях и возможности их применения, Хелен Сэнг поведала о научной отрасли в целом и о кипящих вокруг нее страстях, а Майк Макгру представил удивительные инновации, а также поделился своим видением того, как эта технология работает на пользу мира.
Меня встретил Адам и проводил в свой залитый светом кабинет на втором этаже здания с фасадом из стали, стекла и меди, в котором базируются рослинские ученые. Стены помещения украшали плакаты, изображающие стадии эмбрионального развития цыпленка. Мы сели за стол, и Адам показал мне серию изображений на мониторах, занимавших большую часть его рабочего места. Я увидела острова ярко-зеленого цвета на темном фоне. Это были фотографии, сделанные при помощи микроскопа и изображающие развивающийся куриный эмбрион. Мы рассматривали фотографию его шеи, и зеленые области соответствовали определенному типу ткани – лимфоидной ткани, той самой, из которой состоят и наши с вами лимфоузлы. На самом деле обычно эта ткань не светится зеленым, но Адам модифицировал эмбрион, вставив в геном цыпленка репортерный ген, кодирующий флуоресцентный белок, вызывающий зеленое свечение в местах развития лимфоидной ткани.
Данное изменение в ДНК эмбриона Адам внес традиционным методом: эта технология применяется для модификации генов кур уже по крайней мере лет двенадцать. Фактически всю работу выполнили вирусы. Многие вирусы действуют за счет внедрения своей ДНК в геном организма носителя, и данным механизмом можно воспользоваться, чтобы ввести в клетку другого организма необходимый ген. Такие вирусные векторы изначально были разработаны для использования в генной терапии человека, но они отлично действуют и для кур. Несмотря на то что в основном направить вирус именно к определенному месту в геноме невозможно, сами вирусы достаточно точно определяют участки для внедрения генов там, где этот ген будет читаться клеткой, или экспрессироваться.
Адам использовал этот проверенный на практике метод, чтобы заставить лимфоидные клетки куриных эмбрионов светиться. Сначала он определил белок, который обычно продуцируется этими клетками и который отсутствует в других типах клеток, а затем нашел «переключатель», то есть регуляторную последовательность, расположенную непосредственно перед геном, кодирующим данный белок. После этого Адам сконструировал новый фрагмент ДНК, состоящий из найденного «переключателя» и заранее выделенного у медузы гена, кодирующего зеленый флуоресцентный белок. Используя вирусный вектор, Адам мог поместить созданную им структуру – переключатель и ген медузы – в куриный эмбрион. Тогда во всех клетках лимфоидной ткани при «включении» гена, кодирующего нормальный белок, также активировался ген, кодирующий флуоресцентный белок. Генетически модифицированный эмбрион окрашивался соответствующим образом, давая исследователям возможность видеть точное расположение лимфоидной ткани в ультрафиолетовом свете под микроскопом.
«Это не просто картинки. Благодаря этим фотографиям мы можем вести определенные подсчеты», – объяснил Адам. Снимки указывают точное месторасположение в эмбрионе развивающейся лимфоидной ткани, связанной с иммунной системой. Адам исследовал развитие иммунной системы цыпленка, и эти невероятные кадры служили ключом к пониманию того, как формируются клетки и ткани данной системы организма. Так ученые могут видеть, как создаются защитные механизмы птичьего организма: это все равно что отмечать на старинной карте укрепления, пытаясь понять, каков будет ход битвы. Иммунная система птиц совершенно не похожа на иммунную систему млекопитающих – настолько, что ученые задаются вопросом: как птицы смогли выжить, не имея тех средств защиты, что развились у млекопитающих?
«Практически все, что нам удалось узнать о млекопитающих, говорит о том, что птицы просто не должны существовать, – признался Адам, – но они живут в той же самой среде и справляются с теми же самыми патогенами своими способами». Зачастую путь науки заключается именно в том, чтобы отмечать подобные различия и пытаться понять их причину. Лимфатические узлы играют важнейшую роль в организме млекопитающих, в том числе человека. У птиц есть скопления лимфоидной ткани, но по степени дифференциации они далеки от лимфатических узлов, и тем не менее пернатые прекрасно живут без них. Любопытная загадка. Лимфатические узлы имеют довольно сложное строение. Почему же они развились у млекопитающих и отсутствуют у птиц? Если нам удастся понять, как птицы противостоят инфекциям с помощью своей необычной иммунной системы, то мы будем больше знать и о работе защитных механизмов организма человека.
Помимо прочего, генетическая модификация позволила ученым проследить процесс развития эмбриона с беспрецедентной точностью, и, без всякого сомнения, это важный инструмент в рамках подобных фундаментальных исследований. Но что насчет применения данной технологии за пределами лаборатории, по отношению к курам, выращиваемым на мясо? Исследователи из Рослинского института изучили проблему и под этим углом, предложив использовать сочетание «причуд» эмбрионального развития с удивительно точной новой технологией редактирования генов.
Для распространения определенного варианта гена в поголовье кур необходимо поместить этот ген в клетки, из которых потом образуются гаметы (гаметы – это яйцеклетки и сперматозоиды). Такие клетки, расположенные в половых железах кур (и людей), называются первичными половыми клетками. По сути, речь идет о бессмертных клетках, которые постоянно делятся, и часть их «потомков» превращается в яйцеклетки или сперматозоиды, в зависимости от пола животного, а часть остаются первичными половыми клетками, готовыми продолжать деление, производя все новые яйцеклетки и сперматозоиды и заменяя родительские клетки. Обычный способ, благодаря которому необходимый ген оказывается в первичных половых клетках, – это селективное разведение, косвенный путь, успех которого зависит от чистой случайности. Определяют кур, обладающих необходимым признаком, скрещивают их, и ученым остается лишь надеяться, что ген, отвечающий за интересующий их признак, находится в гаметах и передастся некоторым особям нового поколения. Распространение признака во всем поголовье требует нескольких поколений. Но представьте, что этот процесс можно было бы ускорить, снабдив все яйцеклетки курицы или все сперматозоиды петуха нужным геном, – тогда можно быть уверенным, что после скрещивания у всех потомков будет иметься этот ген и проявится желаемый признак. Именно это и позволяет сделать новая технология редактирования генов. И, по счастливой случайности, изъять первичные половые клетки из куриного эмбриона для их последующего изменения достаточно просто.
Куры вызывают у эмбриологов глубокий интерес еще со времен Аристотеля, который три недели наблюдал за развитием цыплят в яйце. Можно удалить часть скорлупы, чтобы следить за процессом роста эмбриона – и даже взаимодействовать с ним, – не причиняя ему вреда. Цыпленок развивается с одной стороны яйца – с его строением, полагаю, все мы знакомы. До того как яйцо покрывается белком, а затем скорлупой, оно представляет собой желтый сгусток, в котором большую часть пространства занимает крупный желток.
Куриное яйцо после овуляции достигает 2,5 см в диаметре, а человеческая яйцеклетка – всего 0,14 мм. На самом деле, по сравнению с другими клетками нашего организма, это очень крупная клетка. В ней содержится достаточное количество цитоплазмы – внутренней среды клетки, – чтобы обеспечить развитие эмбриона после оплодотворения. Оплодотворенная человеческая яйцеклетка делится, превращаясь в шар из клеток, при этом ее размер не меняется. А вот неоплодотворенное куриное яйцо огромного размера. Его диаметр примерно соответствует диаметру желтка в яйце, которое мы едим, и большая часть неоплодотворенного яйца из него и состоит. Это одна крупная клетка, напичканная питательными веществами желтка для обеспечения развития эмбриона, и совсем-совсем крошечное количество цитоплазмы на одном конце – все это можно разглядеть за завтраком, если захотите. В цитоплазме находится ядро с хромосомами – генетическим материалом, который новый организм получит от матери. Отцовский генетический материал в яйцеклетку доставляет сперматозоид. И вот тогда-то и начинается самое интересное. Если оплодотворенные яйцеклетки млекопитающих делятся медленно – первое клеточное деление (на две клетки) происходит примерно через двадцать четыре часа после оплодотворения, то оплодотворенное куриное яйцо так долго не ждет. К моменту, когда курица откладывает яйца, то есть примерно через двадцать четыре часа после оплодотворения, в яйце уже сформировался зародышевый диск (бластодиск), из почти 20 000 клеток. Если сразу же вскрыть скорлупу яйца, легко заметить этот белый диск на поверхности желтка. Если отложенное оплодотворенное яйцо содержится в тепле, зародышевый диск – те самые 20 000 клеток – продолжает расти, делиться и формировать куриный эмбрион.
Всего через четыре дня после откладывания яйца зародышевый диск уже «свернулся» в трубку, формируя тело будущего цыпленка. В нем отчетливо виден развивающийся глаз, и сердце эмбриона уже бьется. (Для сравнения, человеческий эмбрион достигает сходной стадии развития лишь через полные четыре недели с момента зачатия.) К этому времени вокруг эмбриона цыпленка также сформировалась сеть кровеносных сосудов, оплетающая наружную поверхность желтка. Если посмотреть на четырехдневное оплодотворенное яйцо, которое высиживает курица, на свет, эти сосуды прекрасно видны, они расходятся как тонкая красная паутинка из центрального красного сгустка – это и есть зародыш. Если проделать в скорлупе крошечное отверстие и вставить тонкую иглу в один из кровеносных сосудов эмбриона, то можно взять минимальный образец крови. В нем содержатся первые кровяные клетки, а также некоторые стволовые клетки, имеющие ключевое значение. Это и есть те самые первичные половые клетки, которые в конце концов окажутся в половой железе развивающегося цыпленка и будут готовы производить яйцеклетки или сперматозоиды, в зависимости от пола особи.
Майк Макгру берет анализы крови у эмбрионов на еще более ранней стадии развития, когда тем всего два с половиной дня от роду. На этом этапе развития в крошечном образце крови содержится сто первичных половых клеток. Далее он проделывает следующую операцию: в течение нескольких месяцев выращивает культуру этих клеток вне эмбриона. Это дает исследователю возможность редактировать гены, используя новый метод для точной модификации, вырезая участки ДНК и вставляя на их место новые.
После внесения всех необходимых изменений первичные половые клетки снова вводятся в куриный эмбрион, который также подвергся генетическим манипуляциям и не производит собственные половые клетки. Как ни странно, далее процесс развития протекает нормально: генетически модифицированные первичные половые клетки перемещаются в яичники или семенники развивающегося цыпленка. Когда он вылупляется и вырастает в курочку или петушка, то его организм производит яйцеклетки или сперматозоиды с измененной ДНК.
Инструмент, позволяющий генетикам вносить точные изменения в геном, носит название CRISPR – это новейший механизм в неонеолитическом наборе инструментов, доступном специалистам в области генной инженерии. Значительно усовершенствованная методика по сравнению с традиционной технологией вирусных векторов, хотя и этот новый инструмент тоже позаимствован у природы и был открыт в результате многолетних обширных исследований способов ведения непрекращающейся войны между вирусами и бактериями.
Некоторые бактерии научились весьма хитроумно отражать вирусные атаки, сформировав систему, обеспечивающую их иммунитет к вирусам. Когда такие бактерии подвергаются нападению вирусов, они копируют участок генетического кода вируса в свой собственный геном. Подобное поведение кажется неразумным – так содействовать вирусу, – но это вовсе не так. Таким образом бактерии «запоминают» патоген и успешно отражают его нападение в будущем. Участок ДНК вируса в геноме бактерии окружается странными повторяющимися участками собственной ДНК бактерии, служащими своего рода закладками для бактерии. Эти закладки известны как CRISPR, от английской аббревиатуры, которая обозначает «группы коротких палиндромных повторов, разделенных регулярными промежутками» (Clustered Regularly interspaced Short Palindromic Repeats). При заражении бактерии вирусом ее клетка ищет нужную закладку и прочитывает короткий участок вирусной ДНК, а именно копирует ее последовательность в несколько иной молекуле, РНК (название расшифровывается как рибонуклеиновая кислота, а ДНК – как дезоксирибонуклеиновая кислота). Эта копия, направляющая РНК (гид-РНК), связывается с ферментом бактериальной клетки, разрезающим ДНК, как молекулярные ножницы. Гид-РНК «наводится на цель», связывается с ДНК атакующего патогена, и тогда фермент разрезает ее, нейтрализуя вирус. Таким образом, если вам необходимо сделать разрез в ДНК в строго определенном месте, будет достаточно обозначить цель, создав соответствующую направляющую РНК, а затем связать ее с ферментом-«ножницами», чтобы сделать разрез в ДНК в нужном месте. При этом разрезов можно сделать столько, сколько вы захотите, и на любом участке ДНК.
Возможностей применения этого инновационного инструмента – бесчисленное множество. С помощью новой технологии редактирования генов можно вырезать отдельные гены с гораздо большей точностью, чем раньше, для создания модифицированного эмбриона. По мере развития эмбриона станет понятна функция удаленного гена, поскольку ученые своими глазами увидят, что происходит в его отсутствие. Лучшее представление о развитии эмбриона позволит нам в будущем лучше справляться с болезнями, причем не только у птиц, но и у позвоночных в целом, включая людей. Помимо этого, технология CRISPR имеет потенциальное терапевтическое применение – для удаления поврежденных участков ДНК из живых организмов. Она уже была протестирована в лаборатории для удаления вызывающих рак участков вирусных ДНК из человеческих клеток. На самом деле эта технология настолько точна, что позволяет извлечь одну пару оснований – практически только одну нуклеотидную «буковку» хромосомы – из генома. Но метод CRISPR полезен не только для полного удаления участков ДНК, они также могут быть вырезаны и вставлены в другое место. Клеткам никогда не нравится вмешательство в их ДНК. В результате активируются молекулярные процессы, направленные на устранение повреждений. Обычно для восстановления поврежденного участка ДНК клетка «смотрит» на другую хромосому из пары. Однако клетке можно предложить для копирования сконструированный фрагмент ДНК. Такой вариант использования CRISPR тоже был опробован в лабораториях: дрожжи перепрограммировали на производство биотоплива; были модифицированы некоторые сорта культурных растений; созданы разновидности комаров, устойчивые к малярии. Американская ассоциация содействия развитию науки назвала этот новый инструмент редактирования генов научным прорывом 2015 года. Данная область науки быстро развивается, возможности применения технологии необычайно велики, но возникает слишком много этических вопросов. Более сорока лет Хелен Сэнг изучает развитие позвоночных и применяет методы модификации генома. Она по-прежнему занимается вопросами эмбрионального развития, но часть ее научной деятельности была посвящена изучению модификации кур с помощью генной инженерии для производства полезных белков, которые у них обычно отсутствуют. Хелен проводила эксперименты с куриными яйцами и человеческим интерфероном – белком, который синтезируется в организме человека, но также используется в качестве лекарства для борьбы с вирусными инфекциями. В белке куриного яйца содержится белок овальбумин. Если выделить регуляторную последовательность-«переключатель» для овальбумина и соединить ее с геном интерферона человека, а потом поместить полученную структуру в организм курицы, то он будет вырабатывать как овальбумин, так и интерферон. Таким образом, можно использовать генетическую модификацию кур, чтобы упростить изучение процесса развития, – как поступал Адам с зеленым флуоресцентным белком в лимфоидных клетках, а также можно заставить организм курицы производить полезные для человека белки, которые будут содержаться в яйцах, например интерферон.
Тем не менее в последнее время предметом исследований Хелен в Рослинском институте стали способы изменения птицы, которую мы употребляем в пищу. Ей хотелось заниматься чем-то, имеющим непосредственную пользу в повседневной жизни, например развитием у кур устойчивости к заболеваниям. Хелен вдохновила возможность применения технологии CRISPR для быстрого достижения конкретных результатов. Она рассказала мне о том, как мог бы работать этот инструмент. Для начала необходимо проверить сопротивляемость птиц различным заболеваниям – например, птичьему гриппу – и определить гены, кодирующие данную особенность. Нуклеотидная последовательность этого гена может отличаться от последовательности такого же гена у другой особи лишь несколькими нуклеотидами, но даже такие минимальные различия играют огромную роль. Идентифицировав нужный ген, можно с помощью технологии CRISPR вырезать соответствующий участок генома у другой птицы и заменить его на ген, отвечающий за проявление полезного признака. Таким образом, происходит распространение определенного генетического варианта, уже существующего у кур, на все поголовье, без необходимости прибегать к трудоемкому процессу селекции. Но есть, конечно, и другая возможность: помимо введения варианта гена, выделенного у другой особи того же вида, этот метод может применяться для заимствования генов у другого вида. «Мы можем перемещать генетическую информацию туда, куда пожелаем», – объяснила Хелен, которую также восхищает потенциал нового генетического инструмента. «Мне кажется, именно эта возможность вызывает наибольшие опасения, именно идея перемещения генетической информации за границы вида», – поделилась я. «Но ведь в любом случае речь идет о ДНК, – ответила Хелен, – и нам известно, что она перемещается; так, у человека есть кое-что от других видов». Это действительно так, в частности, в нашей ДНК присутствуют фрагменты генома вирусов, которые так любят оставлять свои генетические следы в чужих геномах.
Что интересно, помимо простого переноса встречающихся в природе генов от одного вида к другому, сегодня специалисты могут конструировать совершенно новые, искусственные гены. Как бы невероятно это ни выглядело, данная технология уже приносит плоды у кур, если можно так выразиться. «Если вам многое известно о птичьем гриппе, то вы можете разработать новые способы борьбы с ним», – пояснила Хелен. Генетики уже активно исследуют данную возможность и создают с нуля искусственные гены, спроектированные особым образом, чтобы нарушить процесс репликации вируса. В частности, один из наиболее многообещающих генов заставляет клетки организма курицы производить крошечную молекулу РНК, досаждающую вирусу, однако эксперименты, проведенные Хелен, показали, что это не дает абсолютной устойчивости к заболеванию, а значит, предстоит еще долгая работа в лаборатории, прежде чем появятся генетически модифицированные, устойчивые к гриппу куры. Однако после посещения Рослинского института смею вас заверить, что работа в данном направлении идет активно и результат уже не за горами.
Изучение возможностей генной инженерии для получения таких важных биологических характеристик, как сопротивляемость заболеваниям, может способствовать признанию обществом технологий генетической модификации домашних животных и культурных растений. Хелен высказала предположение о том, что сам метод CRISPR поможет успокоить некоторые страхи. Точность данного инструмента дает возможность вставить ген в такой участок ДНК, что он не вызовет нарушений в работе клетки (такие места генетики называют «надежные гавани»), при этом максимально увеличив вероятность прочтения, или экспрессии, вставленного гена. При традиционном способе модификации с использованием вирусного вектора невозможно предсказать, где будет встроен ген, хотя, конечно, это становится понятно после его внедрения. Зато технология CRISPR обеспечивает точное размещение гена в нужном участке ДНК.
Хелен много говорила о восприятии генно-модифицированных организмов в обществе. Она убеждена, что в этом вопросе инициативу перехватили определенные группы лоббистов, имеющие свои интересы, и что широкая общественность даже не имеет возможности выбора: признавать новую технологию или нет. «Сейчас ГМО нельзя выбрать. Вы не можете пойти в супермаркет и купить генетически модифицированную курицу. Генетически модифицированные продукты не продаются. Странно, что данная технология полностью исключена на рынке, вместо того чтобы дать людям самим сделать выбор».
Хелен призналась, что, когда она только начала работать в этой области науки и рассказывала людям, чем она занимается, реакция в основном была положительная. «Мне говорили, что это очень здорово, что это отличная идея. Но как только речь заходит о еде, ту же самую идею все готовы предать анафеме!» Я поинтересовалась, не думает ли Хелен, что все началось в 1980-х годах с неудачной попытки биотехнологической корпорации Monsanto ввести, несмотря на возражения некоторых, генно-модифицированную сою в Европе, и Хелен согласилась с тем, что это событие сыграло важную роль. Каким-то образом дискуссия о генетически модифицированных продуктах стала неразрывно связана с опасениями относительно доминирующей роли крупных транснациональных компаний. Хелен поддерживает эти опасения. «Меня как члена организации “Друзья Земли” беспокоят многие проблемы, в частности происхождение продуктов питания, – заявила, к моему удивлению, Хелен, – но я считаю, что неправильно сосредоточивать все внимание на генетической модификации. Эта технология может быть очень полезна для нас. И нужно найти способ воплотить ее полезный потенциал, а также дать людям возможность самим сделать выбор. Сегодня понятие «генетическая модификация» прочно ассоциируется с агрессивным крупным бизнесом, хотя на самом деле это такая же технология, как другие».
Помимо того что объединение ГМО и крупного бизнеса в нашем сознании мешает понять, как на самом деле общество относится к технологии генной инженерии, по мнению Хелен, такая ситуация отвлекает наше внимание от реальных проблем, связанных с будущим производства продовольствия. «Все меньшее число очень крупных компаний контролируют процесс производства продуктов питания. И это не научная, а политическая и экономическая проблема, – поделилась Хелен. – Найти решение не так просто. Ведь нужно признать, что современная промышленность очень эффективна. Нам нужно кормить растущее население Земли. Но также важно обсуждать многие деликатные вопросы: как продолжать использовать эффективные методы, не разрушая окружающую среду и возвращая финансовую прибыль обществу?» В определенной степени опасения, связанные с ГМО и, как следствие, чрезвычайно жесткие ограничения по применению генетической модификации только усугубляют проблему. Расходы на обеспечение соответствия требованиям регуляторов настолько высоки, что становятся серьезным сдерживающим фактором. Только крупные транснациональные корпорации могут позволить себе инвестировать в создание ГМО, в результате инновации оказываются ограничены и концентрируются в руках небольшого числа крупных компаний.
Я задала Хелен еще один сложный вопрос: что, по ее мнению, произойдет в течение следующего десятилетия? Может ли измениться наше отношение к ГМО? Хелен ответила положительно. У молодых людей идея генетической модификации определенно не вызывает сильного отторжения. «Но при этом в США сейчас наблюдается обратное движение», – отметила Хелен. Действительно, в некоторых американских штатах были сделаны попытки ввести более строгие правила по размещению информации на этикетках продуктов с ГМО – невиданная прежде мера. Идея отмечать продукты как «генетически модифицированные» сама по себе странная, особенно если в эту категорию собираются включать только те, что получены в результате модификаций с использованием ферментов, исключая модификации, вызванные облучением организмов. Употребление продуктов с ГМО не представляет опасности для здоровья человека, пусть некоторым и не по душе метод их производства. Более того, в чем смысл этикетки «ГМО»? Чтобы быть хоть немного полезной, она должна содержать как минимум описание генетической модификации и ее возможных последствий. «Но, с другой стороны, если потребители хотят знать, они имеют на это право, – признает Хелен. – Здесь нет простого решения».
Мы поговорили и о «золотом рисе» – генетически модифицированном сорте риса с повышенным содержанием витамина А, восполняющем нехватку питательных веществ, – который вызвал такую неоднозначную реакцию общественности. Некоторые видят в этом исследовании настоящий филантропический проект и верят, что новый продукт действительно поможет снизить дефицит витамина А, особенно в ряде беднейших стран мира. Другие же воспринимают это как простую рекламу, в которую вложилась индустрия генной инженерии, чтобы затем использовать ее как средство убеждения – вот оно, настоящее лицо ГМО, и это только первый шаг их далеко идущих планов. Абсолютно оправданным представляется недоверие к мотивации крупных компаний, которые пытаются увеличить объемы потребления производимых ими гербицидов за счет продажи генетически модифицированных культур. Но, пожалуй, стоит больше доверять тем, кто стремится помочь бедным фермерам и населению, например с помощью Bt-баклажана, устойчивого к заболеваниям, созданного полностью на некоммерческой основе. «Если мы хотим видеть эффективное и устойчивое производство продуктов питания, то не должны отвергать новые технологии, которые помогают добиться этой цели», – подвела итог Хелен.
Пожалуй, в данном случае слишком просто играть роль циничного критика. Очень жаль, что новая технология не была разработана сначала университетами и некоммерческими организациями. Я уверена, что тогда не было бы такой негативной реакции и такого падения доверия. Но репутация технологии генетической модификации уже запятнана из-за связей с крупным бизнесом и его сомнительными целями. Теперь трудно отделаться от этого восприятия, даже несмотря на то что исследования теперь проводятся в исследовательских институтах при университетах с государственным финансированием.
Майк Макгру из Рослинского института убежден, что наилучшее применение технологии редактирования генов, если она когда-нибудь сможет выйти за пределы лабораторий в реальный мир, связано с возможностью повысить устойчивость сельскохозяйственных животных к заболеваниям, особенно в развивающихся странах. «Мы работали с Фондом Билла Гейтса в Африке, – поведал мне Майк с нескрываемой гордостью. – Любой способ повысить выживаемость и улучшить здоровье кур, которых разводят для производства и которые откладывают яйца в далеких от идеальных климатических условиях, принесет человечеству огромную пользу». Но Майка интересует не только возможность применения новой технологии для совершенствования коммерческого птицеводства, особенно в Африке, но и ее возможное использование в популяциях птиц в дикой природе.
«Важнее всего, по-моему, сохранение биоразнообразия. Возьмите, к примеру, гавайскую цветочницу. Человек привез на Гавайские острова птичью малярию, против которой у этой птицы нет иммунитета, поскольку она никогда не сталкивалась с таким заболеванием». Все птицы, обитавшие на небольшой высоте, погибли. Остались лишь те, которые живут высоко в горах, где малярийные комары не выдерживают холода. Однако сегодня, в связи с глобальным потеплением и ростом температур, комары стали залетать и высоко в горы, и цветочницы снова оказались под угрозой исчезновения. «Представьте теперь, что мы бы знали, какие гены отвечают за устойчивость к птичьей малярии, – мечтал Майк. – Можно ли было бы отловить диких птиц, отредактировать их гены, а затем выпустить на волю? Тогда бы у них развился иммунитет к заболеванию и число цветочниц увеличилось бы в разы. Только представьте себе такое!»
Майку понятна неприязнь общества к ГМО, когда речь идет о продуктах питания в развитых странах. «С другой стороны, если бы можно было сделать что-то полезное для всего человечества, для планеты – а у этой технологии множество различных применений, – тогда, мне кажется, люди начали бы воспринимать такую технологию с одобрением». В голосе Майка звучал настоящий энтузиазм, но ни капли самодовольства. «Нужно просвещать людей, – заявил он. – Я говорю не о ложных новостях в интернете и в газетах. Многие полагают, что ДНК – это сама суть, душа животного, а мы эту душу меняем. Но как только станет ясно, что такое ДНК на самом деле и в чем заключается технология генетической модификации, то люди перестанут бояться». И тем не менее слабо верится в то, что первые генетически модифицированные цыплята появятся в индустрии бройлеров. Коммерческие компании слишком внимательно прислушиваются к мнению лоббистов. Американское Управление по санитарному надзору за качеством пищевых продуктов и медикаментов рьяно взялось за маркировку любых генетических модификаций – даже изменений единственной пары нуклеотидов – теперь все они подчиняются тем же жестким требованиям, что и новые лекарства, поэтому вряд ли данная технология получит серьезное развитие в США. Так где же, с точки зрения Майка, генетически модифицированные куры впервые будут включены в пищевую цепочку человека? «В Китае, – заявил Майк. – В этом я не сомневаюсь. У них ведутся масштабные исследования в области генетики. И широко распространен птичий грипп». Будь во мне азарт спорщицы, я бы тоже поставила на Китай. Я убеждена, что предположение Майка подтвердится. Может, и не в 2018 году, но очень, очень скоро.
Показать оглавление

Комментариев: 0

Оставить комментарий