Книга: Гонка за Нобелем. История о космологии, амбициях и высшей научной награде
Назад: К вопросу о спектре
Дальше: Опровержение творения
Назад: К вопросу о спектре
Дальше: Опровержение творения
Некоторые любят погорячее
Существуют ли какие-то следы, некое подобие археологических источников, с помощью которых космологи смогли бы изучить историю Вселенной? В 1948 году, когда была постулирована теория стационарной Вселенной, Джордж (Георгий) Гамов и его аспирант Ральф Альфер открыли необычные космические часы, впрочем больше напоминавшие термометр, чем хронометр. Это было ядро изотопа водорода под названием дейтрон, которое позволило ученым заглянуть в прошлое, а именно в период между одной секундой и примерно 20 минутами после гипотетического Большого взрыва, который стал самым хорошо изученным этапом в космологической истории.
Гамов предположил, что понимание того, как сформировались самые легкие атомы в периодической таблице Менделеева (помните школьные уроки химии?), может пролить свет на события ранней Вселенной. Если Большой взрыв действительно был, то оставшиеся от него следы должны быть самыми легкими, самыми маленькими и самыми простыми по строению атомами, состоящими из минимального количества протонов и нейтронов. Эти легкие атомы были единственными «реликтами», возраст которых могли установить космические археологи. Гамов и Альфер показали, что относительное изобилие химических элементов может служить своего рода времязависимым термометром, который был наиболее чувствителен в период горячей Вселенной сразу после Большого взрыва.
В 1932 году американский физик Гарольд Юри открыл дейтерий (лат. deuterium — второй), чье название указывает на то, что ядро состоит из двух частиц. (Ядро атома водорода содержит один протон, дейтерий по химическому составу идентичен «разновидности» водорода, изотопу, ядро которого содержит протон и нейтрон.) Дейтрон, как называется ядро дейтерия, фактически представляет собой половину ядра гелия. Следовательно, кулинарный рецепт приготовления ядра гелия мог бы звучать так: «Возьмите два дейтрона и запекайте их при температуре в несколько миллиардов градусов в течение минуты». Тепловое излучение этой раскаленной печи, состоящее из частиц света (фотонов), способно прижать два дейтрона друг к другу достаточно сильно, чтобы преодолеть силу электрического отталкивания между двумя положительно заряженными протонами. (Конечно, реальный процесс образования гелия немного сложнее, но суть его такова.) Однако в этом кулинарном рецепте есть два критических условия. При малейшем превышении определенного порога температуры — примерно в 10 млрд градусов Цельсия — основной ингредиент, дейтрон, распадается на части. Следовательно, чтобы создать ядро гелия, температура должна быть выше нескольких миллиардов градусов, но ниже 10 млрд градусов. И вторая сложность: нестабильность нейтрона. Если он не связан с протоном в течение примерно десяти минут, происходит его радиоактивный распад.

Таким образом, чтобы во Вселенной осталось хоть сколько-нибудь дейтерия, строительного материала для гелия, а также свободных нейтронов, необходимых для формирования новых дейтронов, ее температура должна была упасть ниже магического порога в 10 млрд градусов за довольно короткое время — менее чем за 600 секунд. Благодаря неустойчивости нейтронов дейтерий стал для ученых температурозависимыми «часами» — термохронометром. Но что могло вызвать такое быстрое охлаждение от бесконечных температур до этой высокой, но все же конечной температуры? Расширение Вселенной. При расширении все охлаждается — например, вы сталкиваетесь с этим, когда распыляете аэрозоль. Когда выпускается содержимое баллончика, газ внутри него становится менее плотным и металлическая поверхность охлаждается.
Пока снижение температуры Вселенной не преодолело планку в 10 млрд градусов, кишащие в раскаленной плазме фотоны мгновенно разбивали любые образующиеся дейтроны, таким образом обрывая в самом начале цепочку реакций, ведущую к синтезу гелия. Как только Вселенная немного остыла, началось стремительное образование гелия. Но строительный ядерный бум продлился недолго. Через 20 минут после того, как началось охлаждение с бесконечных температур, все было кончено: Вселенная стала слишком холодной, чтобы сплавлять дейтроны в ядра гелия, и процесс, показанный на рис. 14, подошел к концу. С тех пор количество первозданного гелия в космосе оставалось неизменным. Только представьте: за отрезок времени короче одного эпизода сериала «Теория Большого взрыва» образовались почти все легкие элементы во Вселенной!
Три самых легких ядра — дейтроны и ядра водорода и гелия — стали древними артефактами, с помощью которых можно было протестировать модель Большого взрыва. В 1949 году Гамов и Альфер предсказали, что на каждое ядро гелия должно приходиться 12 ядер водорода плюс небольшое количество остаточного дейтерия (который в то время астрономы не умели обнаруживать). Наблюдения за звездами в Млечном Пути в значительной степени согласовывались с этим прогнозом. Ободренные этим подтверждением, Гамов и Альфер пошли еще дальше и предположили, что все элементы, даже углерод, основа жизни, могли быть образованы в первые несколько минут после Большого взрыва в огненном шаре ранней Вселенной.
Позже Альфер и его коллега Роберт Херман выдвинули предположение, что процесс охлаждения Вселенной продолжается по сей день. При этом тепло, оставшееся от первоначального огненного шара, и сегодня подогревает космос до температуры в 5 кельвинов — на пять градусов выше абсолютного нуля по шкале Цельсия. Мы можем увидеть это тепло в виде микроволнового фонового излучения, равномерно заполняющего всю Вселенную.

Идея, что Вселенная превратилась из некогда кипящей и бурлящей точки сингулярности — состояния материи и энергии, с которого все началось, — в ледяную ванну из света, окружающего нас повсюду, была слишком нелепа, чтобы воспринимать ее всерьез. На самом деле только один космолог воспринял эту идею как вызов: Фред Хойл. И он сделал все, чтобы ее опровергнуть.
- 1. Брайан Китинг Гонка за Нобелем. История о космологии, амбициях и высшей научной награде
- 2. Введение. Завещание Нобеля
- 3. Убийственный Нобель
- 4. Предложение, от которого я не смог отказаться
- 5. Глава 1. Космический пролог
- 6. Глава 2. Я теряю веру
- 7. Прошедшее несовершенное время
- 8. Веет ветер свободы
- 9. Глава 3. Краткая история машин времени
- 10. Ошибки, их было немного[11]
- 11. Великие дебаты
- 12. Между Луной и Ватиканом
- 13. Тешим наше космическое эго
- 14. Космическая линейка Генриетты Ливитт
- 15. Роковой телескоп
- 16. Звезда, которая потрясла космос
- 17. Глава 4. Большой взрыв — большие проблемы
- 18. К вопросу о спектре
- 19. Некоторые любят погорячее
- 20. Опровержение творения
- 21. Еще больше трещин в модели Большого взрыва
- 22. Коммуникационные сбои
- 23. В поисках ничто и не там, где надо
- 24. Свет, которого не видел Ом
- 25. Рассказ очевидца
- 26. Глава 5. Разбитая линза Нобелевской премии № 1: проблема признания заслуг
- 27. Признание с опозданием
- 28. Королева тьмы
- 29. Стокгольмские сезоны
- 30. Мертвых не награждать
- 31. Глава 6. Прах к праху
- 32. Большой взрыв или Большое сжатие?
- 33. Три степени разделения
- 34. И снова глотать пыль
- 35. В чем сущность пыли?
- 36. Через тернии в Стокгольм
- 37. На волосок от победы
- 38. Закат стационарности
- 39. Глава 7. Искра, воспламенившая Большой взрыв
- 40. Одержимость Гута
- 41. Поле чудес
- 42. Буря в цилиндре
- 43. Хлоп — и дело дошло до космоса
- 44. Гравитационные волны
- 45. Да здравствуют В-моды!
- 46. Глава 8. Мы строим машину времени
- 47. Присоединяйся и слушай![23]
- 48. BICEP: требуется сборка
- 49. Радарная любовь
- 50. Место, место и место
- 51. Глава 9. Герои льда и пламени
- 52. Гонка по нисходящей[27]
- 53. Тост на краю света
- 54. Человеку свойственно ошибаться… а не калибровать
- 55. Искусство космологии
- 56. O капитан! Мой капитан![28]
- 57. Глава 10. Разбитая линза Нобелевской премии № 2: проблема денег
- 58. Возвращение домой
- 59. Cui bono?[29]
- 60. Потускневшее золото
- 61. Штраф за новизну?
- 62. Современные Медичи
- 63. Тест на серендипность
- 64. Божественное провидение
- 65. Глава 11. Ликование!
- 66. Кто забыл снять крышку с объектива?
- 67. Что значит имя?
- 68. Дрожь перед сотворением
- 69. Микроволновый вестник
- 70. Глава 12. Инфляция и ее неприятие
- 71. Крошечные пузырьки в Мультивселенной
- 72. Подарок для Коперника
- 73. Отрицание отцовства
- 74. Поппер и лопнувшие пузыри[34]
- 75. Все вечное — новое снова: Евангелие от Пола
- 76. Шампанское на бесплатном обеде
- 77. Игра в монополию по-шведски
- 78. Глава 13. Разбитая линза Нобелевской премии № 3: проблема сотрудничества
- 79. ТРЕТИЙ ЛИШНИЙ
- 80. Голосуй досрочно, голосуй часто[37]
- 81. Да здравствует Стокгольм?
- 82. Глава 14. Дефляция
- 83. Внимание, внимание!
- 84. Последствия BICEP2
- 85. Глава 15. Лирика для физиков
- 86. Реки жизни
- 87. Наследники творения
- 88. Поэтическая справедливость
- 89. Глава 16. Возвращение к видению Альфреда
- 90. Женщины и Нобелевская премия по физике
- 91. Октябрьский сюрприз
- 92. Минимизация налогов на наследство
- 93. Нобелевская реформация
- 94. Где есть воля, там есть и путь
- 95. Эпилог. Духовное завещание
- 96. Чаевые от Альберта Эйнштейна
- 97. Скорбь, возмужание и меланхолия[44]
- 98. Благодарности
- 99. Примечания
- 100. Об авторе
- 101. Иллюстрации
- 102. ~
- 103. Над книгой работали
- 104. Примечания редакции
- 105. 1
- 106. 2
- 107. 3
- 108. 4
- 109. 5
- 110. 6
- 111. 7
- 112. 8
- 113. 9
- 114. 10
- 115. 11
- 116. 12
- 117. 13
- 118. 14
- 119. 15
- 120. 16
- 121. 17
- 122. 18
- 123. 19
- 124. 20
- 125. 21
- 126. 22
- 127. 23
- 128. 24
- 129. 25
- 130. 26
- 131. 27
- 132. 28
- 133. 29
- 134. 30
- 135. 31
- 136. 32
- 137. 33
- 138. 34
- 139. 35
- 140. 36
- 141. 37
- 142. 38
- 143. 39
- 144. 40
- 145. 41
- 146. 42
- 147. 43
- 148. 44
Комментариев: 0