Гонка за Нобелем. История о космологии, амбициях и высшей научной награде

Кто забыл снять крышку с объектива?

Слишком многое могло или даже должно было пойти не так. Мы пытались измерить температурный сигнал в миллиард раз холоднее, чем льды Южного полюса. Мы не знали, сумеем ли увидеть хоть что-то. Но мы увидели.
Нашим первым вопросом было: «Кто напортачил?» В 1970-х годах Джо Вебер объявил, что зарегистрировал гравитационные волны в своей лаборатории. Он был выдающимся экспериментатором и одним из изобретателей лазера, и многие считали, что в 1964 году его несправедливо обошли с Нобелевской премией. Но обнаруженные Вебером волны оказались слишком хороши, чтобы быть правдой, — его открытие не подтвердилось. Мы не хотели повторять его печальную участь, становясь вторыми «первооткрывателями» гравитационных волн по ошибке.
Такие ложные открытия случаются в науке на удивление часто. В 2011 году физики, проводившие эксперимент на ускорителе частиц SPS в CERN, сделали потрясающее заявление: они обнаружили нейтрино, способные перемещаться быстрее скорости света. Поскольку теория относительности Эйнштейна утверждает, что ничто в этом мире не может двигаться быстрее скорости света, это было поразительное открытие. На протяжении более чем 100 лет все теории и эксперименты неизменно подтверждали, что космический предел скорости в 300 000 км/сек не просто красивая идея — это закон. Однако нейтрино достигали детектора OPERA на 60 наносекунд раньше, чем ожидалось. Хотя 60 наносекунд могут показаться вам не слишком существенными, но этого было более чем достаточно, чтобы привлечь внимание всего мира и вызвать разговоры о Нобелевке. Заявление исследователей означало, что сам Эйнштейн был не прав и основы физики зашатались.
В конце концов выяснилось, что причиной всему плохо вставленный разъем кабеля, из-за чего время старта нейтрино определялось с некоторой задержкой — как раз на те самые 60 наносекунд, на которые они опережали скорость света. Когда разъем зафиксировали правильно, аномалия исчезла. Но «сверхсветовая» скорость нейтрино стала предметом насмешек для всего мира. Главные исследователи проекта OPERA были вынуждены уволиться с руководящих постов. Учитывая печальный опыт Вебера и команды OPERA, у нас было больше причин нервничать из-за полученного нами сигнала, чем ликовать.
К тому же за нами по пятам шел опасный конкурент — команда Planck, чей космический телескоп, вращавшийся в невесомости на орбите в 1,5 млн км над Землей с ее атмосферными помехами, имел огромное преимущество перед всеми наземными телескопами. Команда Planck могла обскакать нас точно так же, как Пензиас и Уилсон обскакали Роберта Дикке полвека назад. Хуже того, телескоп BICEP2 был демонтирован еще год назад. Мы не могли вернуться и проверить, не забыли ли мы снять крышку с объектива. У нас оставалось только одно мощное оружие: данные, очень много данных.
Мы начали с проверки непротиворечивости данных, разделив весь их массив на два набора и составив две карты — одну на основе первых 18 месяцев наблюдений BICEP2, вторую — на основе вторых 18 месяцев. Обе карты показывали одинаковый сигнал, хотя и с более низким отношением сигнал/шум (что было естественно, поскольку каждая карта использовала всего половину данных).
Как гласит народная мудрость, «семь раз отмерь, один раз отрежь». Мы измерили данные BICEP2 десятками разных способов, пытаясь найти несоответствия между наборами данных разных детекторов или различия при сканировании неба справа налево и слева направо. Мы подвергали наши данные самым немыслимым пыткам; каждый из нас пытался придумать наиболее невероятный сценарий, который мы могли упустить из виду. Была даже выдвинута версия, что зарегистрированный нами сигнал — дело рук инопланетян.
Когда мне доводится выступать на публике и меня представляют как космолога, я часто шучу, что не стоит путать меня с косметологом и доверять мне свои волосы и ногти. Однако многие не знают, что между космологией и косметологией существует глубокая связь. Оба слова восходят к греческому глаголу kosmeö, означающему «приводить в порядок, украшать». Прекрасный лик Вселенной как нельзя лучше это подтверждает. Когда я впервые увидел зарегистрированный BICEP2 сигнал (рис. 51), у меня перехватило дух от завораживающего узора из спиралей и завихрений. Это было именно то, что прогнозировала инфляционная модель, и это была любовь с первого взгляда. Космос был не просто прекрасен. Он щеголял перед нами своей красотой.

 

 

К нашему радостному возбуждению примешивались тревожные предчувствия. После года скрупулезного анализа мы убедились, что сигнал не мог исходить ни от Южного полюса, ни от атмосферы, ни от самого BICEP2. Что тогда могло быть его источником, как не инфляция?
Одним из возможных источников могла быть та самая коварная космическая субстанция, которая еще со времен Галилея сбивала с толку астрономов, — пыль.
Мы знали, что облака межзвездной пыли в Млечном Пути рассеивают микроволновое излучение и создают похожий «узор» поляризации В-типа. Но могла ли межзвездная пыль сгенерировать весь обнаруженный нами сигнал? Как определить, является ли зарегистрированный BICEP2 рисунок отпечатком первичных гравитационных волн на микроволновом фоне или обычной засветкой от галактической пыли?
Несмотря на то что мы выбрали для охоты за В-модами «Южную дыру» как участок неба с наименьшим уровнем запыленности, опираясь на предсказания лучших доступных моделей, эти оценки были полны неопределенности. Чтобы узнать реальный вклад пыли, нам требовались данные измерений на высоких частотах.
Как я уже говорил, интенсивность поляризованного излучения пыли резко возрастает с повышением частоты. BICEP2 работал только на одной частоте в 150 ГГц, соответствующей длине волн около 2 мм. Удвоение частоты усиливало пылевой сигнал более чем в три раза. Если обнаруженные нами В-моды продуцировала пыль, это было бы очевидно при частоте 300 ГГц… если бы мы располагали данными измерений на таких высоких частотах.
На самом деле такая карта высокочастотных измерений существовала, но имелась одна загвоздка: она была составлена конкурирующей командой Planck. А на начало 2014 года участники этого проекта еще не опубликовали своих результатов. Мы опасались, что они не только могли намеренно придерживать ключевые данные, доказывающие правильность наших измерений, но и наткнулись на тот же сигнал В-мод, который обнаружили мы. Если этот сигнал действительно настолько силен, телескоп Planck вполне мог его заметить.
Мы пытались наладить сотрудничество с командой Planck, при этом держа свою находку в строгом секрете. Это было опасное маневрирование. Как вы уже знаете, дочитав книгу до этого места, группы ученых иногда сотрудничают, но гораздо чаще конкурируют, особенно когда перед ними стоит конкретная — и очень желанная — цель. Этот аспект науки вызывает тревогу; многие из нас рассматривают данные как свою «собственность», тогда как на самом деле они принадлежат людям, оплачивающим наши счета, — налогоплательщикам.
BICEP2 дал очень много информации, требующей обработки, но у Planck она была гораздо обширнее — охватывала все небо, причем на нескольких частотах. После того как мы исключили все прочие факторы, ключ к судьбе нашего открытия крылся в высокочастотных данных.
Но команда Planck отказалась сотрудничать. Либо у них не было данных, которые нам были необходимы, либо они не хотели их давать, чтобы помешать нам завоевать пальму первенства. Нам пришлось действовать на свой страх и риск. Недостаток качества в виде частотного охвата BICEP2 мы компенсировали количеством: разработали пять различных моделей для пылевого излучения на основе старых данных — тех самых, которые использовали при выборе региона сканирования для BICEP почти десять лет назад.
Каждая из этих пяти моделей предсказывала общее тепловое излучение пыли в определенном регионе галактики, но ни одна из них не позволяла предсказать интенсивность пылевой поляризации конкретно в Южной дыре. Мы экстраполировали эти данные на нужный нам участок неба и рассчитали, как выглядело бы пылевое излучение в случае небольшой поляризации. Мы строили догадки, стараясь проявлять сдержанность, и в конечном итоге пришли к выводу, что вклад пыли может объяснять около 5 % зарегистрированного нами сигнала.
Потом нас осенило: в начале года один из членов команды Planck и эксперт по поляризации Млечного Пути, д-р Жан-Филипп Бернар, выступил с публичным докладом, который был размещен онлайн. В нем Бернар использовал карту излучения галактической пыли, составленную на основе измерений Planck. Это была настоящая карта сокровищ, обозначавшая места, где было зарыто нобелевское золото.
Как только мы наткнулись на этот доклад, один из членов нашей команды оцифровал слайд Бернарда и с помощью экстраполяции раскрыл данные Planck. Конечно, так поступать не принято. На самом деле многим из нас это было не по душе. Мы взяли неопубликованные данные в виде картинки в интернете и преобразовали их в количественную информацию. Но благодаря этому нам удалось создать новую модель и получить сведения, столь необходимые для интерпретации данных BICEP.
Команда Planck не торопилась с публикацией этой карты, и, похоже, у них были свои систематические погрешности и причины для беспокойства. Но слайд находился в свободном доступе в интернете, что формально давало нам право на его использование. Однако, если опубликовать наши результаты, насколько убедительны будут эти контрабандные данные? Поначалу нами двигало просто любопытство, это был всего лишь безобидный маневр, способ удостовериться в правильности наших предположений. Но через несколько месяцев эта пиратская карта стала важным звеном в цепочке рассуждений, приведшей нас к убеждению, что вклад галактической пыли в полученные BICEP2 данные можно спокойно игнорировать и, следовательно, подтверждались наши самые безумные надежды: мы обнаружили следы инфляционных гравитационных волн в реликтовом излучении.
То, что мы использовали этот слайд, не давало мне покоя. Во время телеконференций и в электронных письмах я сетовал на это руководителям BICEP2. Я хотел знать: насколько мы уверены в точности наших данных о пылевом излучении? Меня тревожило то, что результаты BICEP2 уже могли быть опровергнуты исследованиями Planck. Поляризация галактической пыли была наиболее очевидным объяснением сигнала, который мы могли увидеть, а Planck — нет.
«Как мы можем полагаться на слайды, которые были показаны в ходе публичного доклада и не предназначались для количественных оценок? — спросил я у всей команды по электронной почте. — Меня тревожат эти 5 %. Как объяснить эту цифру рецензентам/редактору? Представьте, что кто-нибудь, например научный руководитель Planck, спросит: „Откуда взялась эта цифра?“ Что будет, если выяснится, что мы взяли ее из неопубликованных данных?»
В ответ на мое письмо руководство заявило, что в использовании слайда нет ничего плохого, если мы изложим предположения, на которые опирались. Соруководитель BICEP2 Джейми Бок также был одним из руководителей проекта Planck. После смерти Ланге все обязанности по участию в этом проекте перешли к нему, и его группа в Лаборатории реактивного движения НАСА разработала поляриметр, работающий на частотном канале в 353 ГГц, на основе которого была составлена карта Бернара. Скорее всего, Джейми видел не только слайды, но и реальные данные, рассуждал я. Следовательно, он должен был знать, действительно ли BICEP2 обнаружил следы рождения Вселенной… или это просто самый чувствительный детектор пылевого излучения, из когда-либо созданных астрономами. Хотя космологи не подписывают соглашений о неразглашении, использование данных одного эксперимента для уточнения данных другого, конкурирующего эксперимента, по крайней мере пока оба не завершены, столь же сомнительный поступок в этическом плане, как и инсайдерские сделки в бизнесе. Да ладно, успокаивал я себя. Джейми, наверное, просто взглянул на данные Planck о поляризации пыли и убедился, что ею можно пренебречь. Кто бы на его месте поступил иначе?
Кроме того, слайд Бернара только подтверждал результаты наших пяти моделей, каждая из которых убедительно показывала, что пыль не могла быть правдоподобным объяснением тех ярких B-мод, которые увидели мы. Информация со слайда была одним из доказательств, но не решающим. Главная заслуга принадлежала моему первому телескопу BICEP, который теперь был переименован в BICEP1.
В отличие от BICEP2, который сканировал небо всего на одной частоте в 150 ГГц, где самое яркое фоновое излучение, BICEP1 вел наблюдения на трех частотных каналах в 90, 150 и 220 ГГц. Благодаря измерениям на этих дополнительных каналах мы смогли до некоторой степени исключить влияние пыли. В интервью журналу Nature ведущий исследователь проекта BICEP2 Джон Ковач, отвечая на вопрос: «Когда вы впервые поняли, что обнаружили те самые „неопровержимые улики“ инфляции?» — сказал: «Прошлой осенью, когда мы впервые сравнили сигнал, зарегистрированный BICEP2, с данными BICEP1. Это был убедительный результат, поскольку BICEP1 использовал другие детекторы и гораздо более старые технологии. Таким образом, тот факт, что мы смогли увидеть тот же сигнал с помощью телескопа совершенно другого типа, позволил исключить значительную долю сомнений. Даже самые законченные скептики в нашей команде теперь поверили».
Одним из тех скептиков был я. Мы могли использовать слайд Planck, поскольку он не был главным доказательством. Наиболее убедительные свидетельства исходили из данных BICEP1, которые подтверждали, что не пыль была причиной нашего сигнала, и мы были уверены в этом на 95 %. Другими словами, вероятность того, что обнаруженный нами сигнал был сгенерирован пылью, составляла 1:20. Вы бы согласились сыграть в самую большую лотерею в истории космологии при шансе победить 95 %? Думаю, да.
Джон Ковач сделал последнюю попытку запросить данные у команды Planck, но снова получил отказ. Я был уверен, что они собираются нас обскакать. Медлить было нельзя. Данные BICEP1, подкрепленные слайдом Бернара, убедили всех нас — 49 человек, включая меня. Я был готов к компромиссу. Время пришло: либо публиковать, либо можно распрощаться с нобелевскими мечтами.
Показать оглавление

Комментариев: 0

Оставить комментарий