Квант

Великое объединение

Можно достичь тех пределов, где различные силы становятся едины, изучая все более и более короткие отрезки. КЭД гласит, что электрон всегда окружен облаком виртуальных фотонов, а также виртуальных пар электрон-позитрон, которые постоянно появляются и исчезают вновь. Вся эта активность маскирует электрический заряд электрона и в итоге производит лишь тот заряд, который мы видим. Такими словами можно описать, как перенормировка справляется с бесконечностями. Здесь в роли бесконечности выступает сам заряд электрона, но он начинает расти, только когда мы увеличиваем масштаб, пробиваясь сквозь окружающую его вуаль виртуальных частиц.
Становясь все ближе к источнику электромагнитной силы, мы узнаем, что эта сила растет. С двумя ядерными силами – которые гораздо сильнее электромагнитной в диапазоне своего действия (внутри ядра) – происходит противоположное: на более коротких отрезках эти две силы становятся слабее. Когда мы достигаем расстояния (10–28 миллиметра), которое столь же мало в сравнении с размером протона, как протон мал относительно нас, мы обнаруживаем, что все три силы равны по модулю. Именно здесь они снова могут считаться одной силой и восстанавливается определенная симметрия.
Способная объединить три этих силы теория называется теорией великого объединения. Физики уже довольно давно пытаются вывести такую теорию, в которой бы все вставало на свои места. Она смогла бы заменить менее удобную стандартную модель, которая представляет собой небрежную комбинацию теории электрослабого взаимодействия и КХД. В 1970-х годах была решена особенно трудная проблема о том, что делать с масштабом, когда все три силы становятся равными. В той точке приближения, когда электромагнитная сила и слабое ядерное взаимодействие оказываются равными и в дело вступает электрослабая сила, сильное ядерное взаимодействие еще слишком сильно и симметрия остается нарушенной. Для истинной симметрии все три должны сравняться одновременно.
Тогда был открыт новый тип симметрии, который оказался еще более функциональным, чем тот, что был необходим для объединения электромагнитной силы и слабого ядерного взаимодействия. Он получил название «суперсимметрии» и стал математическим способом решения этой проблемы. По сути, он показывает симметрию, или связь, между электронами, нейтрино, фотонами и W – и Z-бозонами (частицами, описываемыми теорией электрослабого взаимодействия) с одной стороны и кварками и глюонами (частицами КХД) – с другой. Его основное предсказание заключается в том, что каждая из известных частиц имеет «суперсимметричного» партнера с противоположным характером. Следовательно, электрон соотносится с сэлектроном (бозоном), а фотон – с фотино (фермионом). Суперсимметрия также предсказывает, что протон может распадаться на позитрон и пион. Если бы этот процесс можно было засечь в природе, он стал бы убедительным свидетельством в пользу теории великого объединения. Пока распад протона не наблюдался, но, учитывая его редкость, всегда остается шанс, что его просто еще не успели заметить. Мы просто пока не знаем, можно ли сказать, что поведение природы суперсимметрично. Но, возможно, суперсимметрии уготована более фундаментальная роль и ей найдется применение в теории, на фоне которой все теории великого объединения покажутся незначительными.
Показать оглавление

Комментариев: 0

Оставить комментарий