Квант

Квантовая механика и генетические мутации

Несколько лет назад мы с моим коллегой-микробиологом Джонджо Мак-Фадденом опубликовали в американском журнале Biosystems спекулятивную статью, в которой предположили квантовое происхождение необычного типа генетической мутации, известной как адаптивная мутация, бактерии Е. coli. Спекулятивной эта статья была по двум причинам. Во-первых, процесс адаптивных мутаций был и в некотором роде остается объектом противоречий. Во-вторых, предлагаемый нами квантовый механизм требовал наличия у живых клеток определенного уникального квантового свойства, иначе вся наша теория не выдерживала бы никакой критики.
Теперь мы знаем, что свойства генетического кодирования молекул ДНК во всех живых клетках объясняются природой водородных связей между базовыми парами. Как только Френсис Крик и Джеймс Уотсон открыли двойную спираль ДНК, стало известно, что определенные естественные мутации могут происходить из-за произвольного квантового туннелирования протонов с одного места ДНК в другое, что приводит к формированию другой химической связи. Эта своего рода случайная ошибка в коде ДНК случается в одном случае на миллиард, но, когда это происходит, мы получаем квантовую мутацию. Таким образом, квантовая механика явно сыграла некоторую роль в процессе эволюции.
Адаптивные мутации невозможно объяснить столь же очевидным образом. Когда штамму клеток Е. coli, называемому lac-, поскольку он лишен энзима, позволяющего ему питаться лактозой, дают одну лактозу, ожидается, что большинство клеток погибнет от голода. Однако немногие случайным образом мутируют в штамм lac+, который может питаться лактозой и расти, а следовательно, начинает делиться. Было обнаружено, что в присутствии лактозы в lac+ Е. coli мутирует гораздо больше lac-, чем в ее отсутствие, даже несмотря на то что они не могут знать о присутствии лактозы, пока не произойдет мутация. Это казалось настоящим волшебством.
Объяснение здесь может дать идея квантовой суперпозиции. Видите ли, в каждой клетке мутация lac – в lac+ может объясняться туннелированием одного протона между двумя соседними положениями. С точки зрения квантовой механики, конечно, волновая функция протона такова, что есть определенная вероятность его обнаружения в любом из этих положений, то есть она пребывает в суперпозиции осуществленного и неосуществленного туннелирования. При условии что такая квантовая когерентность может достаточно долго поддерживаться в клетке, вся ДНК должна превратиться в суперпозицию мутировавших и не мутировавших состояний.
Проблема, само собой, заключается в декогеренции, в просачивании квантовой странности в окружающую среду. Это должно занимать не более одной миллионной доли секунды, то есть слишком быстро, чтобы в клетке произошли необходимые изменения и она (или часть ее волновой функции) мутировала в тот штамм, который знает о присутствии лактозы и может ее перерабатывать. Однако мы хотели, чтобы суперпозиция сохранялась достаточно долго, чтобы декогеренцию вызывала сама лактоза. В таком случае лактоза фактически открывает коробку с котом Шрёдингера и приводит к коллапсу волновой функции клетки, которая начинает описывать лишь одно состояние из двух возможных. Это происходит потому, что при наличии верного штамма Е. coli запускаются химические реакции с участием лактозы, которые также могут вызывать декогеренцию. Если декогеренция в присутствии лактозы проявляется быстрее, чем в ее отсутствие, мы можем объяснить неожиданные результаты, полученные в экспериментах по адаптивной мутации.
Причина этого в таком случае кроется в простом механизме, где повторяющиеся измерения «тянут» квантовую систему из одного состояния в другое. Если лактоза «измеряет» клетку и выясняет, что она пребывает в мутировавшем состоянии lac+, что происходит редко, то клетка начинает питаться этой лактозой и расти. Но если клетка пребывает в состоянии lac-, то ничего не происходит, и она снова возвращается в суперпозицию двух состояний. Следовательно, чем чаще будет проводиться измерение, тем более регулярным станет появление мутаций lac+.
К несчастью, поверить, что квантовая когерентность будет так долго сохраняться в столь сложной и активной среде, как живая клетка, весьма нелегко. Это возможно, только если клетка ведет себя совершенно иначе, чем неодушевленная система эквивалентного размера, сложности и температуры. И правда, в 1944 году в своей знаменитой книге «Что такое жизнь?» Эрвин Шрёдингер предположил, что живые клетки поддерживают структуру и порядок, эквивалентный порядку обычной материи при температуре, стремящейся к абсолютному нулю – в режиме, где квантовые эффекты сохраняются гораздо дольше. Но, поскольку никто до конца не понимает, что именно делает жизнь такой особенной, наша теория остается спекуляцией.
За прошедшее с момента публикации статьи время я несколько охладел к этой идее. Однако физик Пол Дэвис – один из немногих, кто воспринял наше предположение на ура, – тоже интересуется этими вопросами. Он утверждает, что нам еще предстоит должным образом понять природу декогеренции, не говоря уже о сложных квантовых свойствах живых клеток, поэтому нам еще работать и работать в этом направлении.
Показать оглавление

Комментариев: 0

Оставить комментарий